
" B; 1]'I FIlu. coP' - "

oop

TIME-INTEGRATED SPECTRUM OF A

RADIATIVELY COOLING PLANCKIAN EMITTER

THESIS

Drew R. Fisher
Major, USAF

AFI T/GNE/ENP/90M- 1

DISTRI:)JTION STATEMENT A I..1_ ,.. I! .

Approved for public relee; APR 0 5 1990
Distnbution Unlimited

DEPARTMENT OF THE AIR FORCE C E
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY -.

Wright-Patterson Ar Force Bose, Ohio

.9 04 05 114'



AFIT/GNE/ENP/90M-1

TIME-INTEGRATED SPECTRUM OF A

RADIATIVELY COOLING PLANCKIAN EMITTER

THESIS

Drew R. Fisher
Major, USAF

AFIT/GNE/ENP/9OM-1

Approved for public release; distribution unlimited



AFIT/GNE/ENP/90M-1

TIME-INTEGRATED SPECTRUM OF A RADIATIVELY COOLING

PLANCKIAN EMITTER

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science \

4Acc si .nor

Drew R. Fisher, B.S.

Major, USAF

March 1990 Al

Approved for public release; distribution unlimited



AcknowledQements

I owe many thanks to the Lord who provided support,

love, and my sense of understanding; to my wife and chil-

dren, Naomi, Dustin, and Andin, who supported me in this

endeavor with love and patience through long, hard hours of

work; and to my advisor LCDR Kirk A. Mathews, USN, for his

gifted insight, his guidance, and also his patience.

Drew R. Fisher

ii



Table of Contents

Page

Acknowledgements .................................... ii

List of Figures ..................................... v

Abstract ........................................... vii

I. Introduction ................................. 1

Background ................................. 1
Problem .................................... 3
Scope ...................................... 3
Approach and Assumptions ................... 4
Presentation ............................... 5

II. Theory ....................................... 6

Definitions ................................ 6
Energy Balance ............................. 7
Concept of the Time-Integrated Spectrum .... 9
Change of Variables from Time to
Temperature ................................ 10
Heat Capacity .............................. 12

III. Numerical Approximation ...................... 14

IV. Model 1 - Radiative Cooling with Constant,
Material Heat Capacity, but No Radiation
Heat Capacity ................................ 16

Model 1 Description ........................ 16
Heat Capacity .............................. 17
Planckian Spectra .......................... 18
Time-Integrated Spectra .................... 20

Summary .................................... 24

V. Model 2 - Radiative Cooling with Temperature
Consistent, Radiation Heat Capacity, but No
Material Heat Capacity ....................... 26

Model 2 Description ........................ 26
Heat Capacity .............................. 27
Time-Integrated Spectra .................... 28
Comparison with Plankian Spectra ............ 32
Summary .................................... 33

VI. Model 3 - Radiative Cooling with Constant,
Material Heat Capacity and Temperature
Consistent, Radiation Heat Capacity ........... 35

iii



Model 3 Description ........................ 35
Heat Capacity .... ................... 36i Time-Integrated Spectra3

Tim-Inegate Sectra....................... 36
Comparison with Planckian Spectra ........... 40
Summary .................................... 42

VII. Model 4 - Radiative Cooling with Temperature
Consistent Heat Capacity ..................... 43

Model 4 Description ........................ 43
Binding Energy ............................. 44
Material Energy ............................ 50
Heat Capacity .............................. 51
Time-Integrated Spectra .................... 52

Comparison with Planckian Spectra ........... 56
Summary .................................... 59

VIII. Conclusions and Recommendations ................ 60

Conclusions ................................. 60
Recommendations ............................. 61

Appendix A: Computer Program to Calculate the
Time-Integrated Spectrum ................. 62

Appendix B: Computer Program to Fit Time-
Integratud Spectra with Two
Planckian Basis Functions .............. 74

Appendix C: Computer Programs to Calculate

Binding Energy and Temperature .......... 85

Bibliography ........................................ 90

V ita ................................................ 9 1

iv



List of Fiqures

Figure Page

1. Imploding Liner Pinch ............................. 2

2. Planckian Spectra a - d Normalized to Unit Area ... 19

3. Model 1 Time-Integrated Spectrum Normalized to Unit

Area; OG=1 KeV .................................. 2O

4. Model 1 Time-Integrated Spectrum (Magnified View)

Normalized to Unit Area; G=i- KeV ................. 21

5. Model I Time-Integrated Spectrum Normalized to Unit
Area; 0,-1O KeV .................................. 23

6. Model 1 Time-Integrated Spectrum Normalized to Unit

Area; 81-0.02 KeV ................................ 23

7. Planckian Spectra a - c Normalized to Unit Area and
Multiplied by 0' ................................... 29

8. Model 2 Time-Integrated Spectrum Normalized to Unit

Area; 8,-I0 KeV .................................. 30

9. Model 2 Time-Integrated Spectrum Normalized to Unit

Area; 0=O.0 2 KeV ................................ 31

10. Comparison of Time-Integrated Spectrum 8,-i KeV
with Plankian Spectra ............................. 31

11. Model 1, 2, and 3 Time-Integrated Spectra Normal-

ized to Unit Area; 01=I KmV ........................ 38

12. Density Effect on Model 3 Time-Integrated Spectra
Normalized to Unit Area; 0,-0.02 KeV .............. 39

13. Density Effect on Model 3 Time-Integrated Spectra

Normalized to Unit Area; O8~l KeV ................. 40

14. Comparison of Two-Planckian Curve-Fit with Model 3
Spectrum; N,=IE27 particles/m'.................... 41

15. Comparison of Two-Planckian Curve-Fit with Model 3
Spectrum; Ar,=IE 29 particles/m'. ................. 41

16. Binding Energy versus Atomic Number Density for
Carbon ............................................ 47

V



17. Linear-Log Plot of Free Electrons per Atom versus
Temperature for Copper ............................ 49

18. Smoothed Linear-Log Plot of Free Electrons per Atom
versus Temperature for Copper ..................... 49

19. Linear-Log Plot of Binding Energy per Atom versus
Temperature for Copper ............................ 50

20. Comparison of Model 4 Spectra Normalized to Unit

Area; eijI KeV, N, = IE+27 atoms/m.............. 53

21. Linear-Log Plot of Change in Binding Energy per
Atom with Respect to Temperature versus Temperature 55
for Plutonium .....................................

22. Linear-Log Plot of Change in Free Electrons per
Atom with Respect to Temperature versus Temperature 55
for Plutonium .....................................

23. Comparison of Two-Planckian Curve-Fit with Model 4 56
Spectrum . .........................................

24. Combination Curve-Fit for Model 4 Copper Spectrum 58

25. Comparison of Combination Curve-Fit with Model 4 58
Copper Spectrum ...................................

vi



AFIT/GNE/ENP/90M-1

ABSTRACT

This paper investigates the effect of cooling a hot

Planckian emitter upon its fluence spectrum . A sequence of

models of increasing complexity is developed to determine

the effects of various aspects of cooling upon the spectrum,

such as initial temperature, density, and ionization state

of the plasma. Spectra are calculated for radiating plasmas

composed of different atomic number materials (carbon, alu-

minum, copper, and plutonium) at initial temperatures of

0.02 - 10 KeV, and initial densities of 1E+25 - 1E+29

atoms/m 3 ., to observe the effects of these parameters on the

fluence spectrum. The change in material and binding energy

for some spectra at the low energy end produces a second,

prominent but smaller peak. The resulting non-Planckian

spectra can be approximated with two or more Planckian basis

functions having different temperatures.

v
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0TIME- INTlGRATED SPECTRUM

OF A RADIATIVELY COOLING PLANCKIAN EMETTLP

I. Introduction

This paper deals with computing the spectral distribu-

tion of thermal radiation emanating from an extremely hot

body, and how cooling effects its spectrum taken over time.

Background

Astronomers have long been interested in the spectral

character of radiation coming from hot bodies such as stars,

quasars, and supernovas, to obtain clues to their makeup,

temperature, age, and internal processes that occur in their

life cycle. It is generally recognized that nuclear fusion

is the process that heats the cores of stars to extremely

high temperatures (millions of degrees Kelvin), and causes

them to radiate enormous quantities of energy.

Currently, there is much research effort going on world-

wide to achieve a controlled and sustained source of fusion

energy as an alternative to other sources of energy. Fusion

experiments, then, can serve as likely sources for studying

the spectral nature of hot bodies (plasmas) undergoing spon-

taneous cooling, once the power source is shut off.

0



One example of an experimental setup that is capable of

achieving high temperatures in a plasma (although not yet to

the point of fusion ignition) is the imploding liner pinch

illustrated in Figure 1, adapted from (1:315).

F
L inr Iz

End Plug Plsmo

F@r
Fig. 1. Imploding Liner Pinch

A plasma is contained within a cylindrical thin metal tube

or liner through which a large electric current, i . is

passed. The axial-directed current induces an azimuthal

magnetic field, B4 , around the liner. Both current and

magnetic field interact together to produce a radial,

inward-directed force, F, , that causes the liner and

plasma to implode. Thp compressive force and inertial

momentum of the liner are eventually halted by the increas-

ing plasma pressure from within, but by that time compres-
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sion has superheated both plasma and liner past the point of

0 vaporizing and ionizing the liner material which becomes a

part of the plasma.

In order to predict the spectral behavior of a hot body,

such as the plasma in the imploding liner pinch, through a

mathematical model, it is sometimes assumed that the temper-

ature of material and radiation is the same, therefore the

distribution of radiant energy emitted from the body's

surface can be described as Planckian. This study also

assumes this. However, integrating the spectrum over time,

i.e., the time-integrated spectrum or fluence spectrum,

should show the behavior to be non-Planckian.

Problem

*The purpose of this study is to investigate the effects

of cooling on the fluence spectrum of a Planckian emitter.

In addition, the spectrum is compared to a Planckian curve-

fit spectrum to determine the validity of approximating the

fluence spectrum with Planckian basis functions.

Scope

The study is computational and analytic rather than

experimental, so the results are predictive in nature.

Three parameters are varied as initial conditions for the

Planckian emitter to observe their effects during cooling.

These are temperature, density, and material composition.

The initial temperature range is 0.02 - 10 KeV, and the

3



emitter is allowed to cool to about 1/50,000th of the i.i-

tial temperature. Densities range from 1E+25 - IE+29 atoms

per cubic meter, and material composition is one of the

following elements: carbon, aluminum, copper, or plutonium.

Approach and Assumptions

A sequence of models is considered that increases in

complexity according to the type of internal energy assumed

to be contained within the emitter, whether it be material

energy, radiation energy, or a combination of both, etc.

These models and their assumptions are as follows:

Model 1 - Radiative Cooling with Constant, Material Heat

Capacity, but No Radiation Heat Capacity.

- The volume is constant; this model excludes cooling by

expansion.

- Local thermodynamic equilibrium exists between matter

and radiation.

- The temperature is uniform throughout the volume at

any instant, but varies with time.

- The heat capacity remains constant throughout the

cooling process.

Model 2 - Radiative CoolinQ with Temperature Consistent,

Radiation Heat Capacity, but No Material Heat Capacity.

- The above assumptions apply except the radiation heat

capacity varies with temperature.

@4



Model 3 - Radiative Cooling with Constant, Material Heat

Capacity and Temperature Consistent, Radiation Heat

Capacity.

- The assumptions of Model I and 2 taken together apply

to this model, with clarification that the heat capacity

contributed by material is constant, and the heat capac-

ity contributed by radiation changes with temperature.

Model 4 - Radiative Coolina with Temperature Consistent

Heat Capacity.

- Model 3 assumptions are retained except:

- The material heat capacity is allowed to vary accord-

ing to the ionization state of the atoms which is depen-

dent on temperature.

*Presentation

Chapter II presents the general analytic form and theory

behind calculating the time-integrated spectrum, and Chapter

III shows the numerical approximation for the analytic form.

Then Chapters IV - VII present the models in order as dis-

cussed above along with results and discussion of the com-

1)UtLPd spectra. Conclusions and recommendations are included

in Chapter VIII.
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II. Theory

Let us start with a definition of the radiatively cool-

ing Planckian emitter and its surroundings, followed by some

assumptions about how they interact through the law of

energy conservation, then develop the concept of a time-

integrated spectrum, first as a function of time, then as a

function of temperature. From the latter development, it

becomes apparent that heat capacity plays a major role in

the spectrum behavior.

Definitions

The initially hot body under consideration can be any

collection of ions, electrons, and neutral atoms from a

single element constrained to an arbitrary, constant, finite

volume. For initial temperatures of 0.02 to 10 KeV under-

taken in this study (1 KeV = 11,600,000 K) and densities of

1E+25 to 1E+29 particles/mO, an optically thick plasma is an

appropriate description for the hot body. Within the vol-

ume, the material particles collide with one another giving

rise to radiation particles or photons which in turn are

absorbed or scattered by the material particles. At any

given time, a fraction of these photons reach the volume

boundary and radiate outward, away from the body, depleting

the plasma of its internal energy. The loss of energy is

equivalent to lowering the temperature of the plasma, hence

it cools by radiative emission.

6



Besides the process of radiative cooling, two other

mechanisms exist for cooling the body. They are the trans-

fer of kinetic energy from material particles to the wall or

force field defining the volume boundary, and expansion of

the volume; however, neither cooling mechanism is considered

in this study.

At any instant in time, assuming the radiation tempera-

ture is the same as the kinetic temperature of the material

particles in a condition of local thermodynamic equilibrium,

the photon energy distribution can be described by the

Planck function at some average temperature. Thus, the

cooling emitter is Planckian in nature.

Just beyond the plasma boundary lies an infinite, empty

universe at temperature T=O Kelvin into which the radi-

ation escapes. It is assumed that there is no flux of radi-

ation into the volume.

Energy Balance

Having defined the cooling emitter and its surroundings,

let us now account for the gain and loss in energy of the

plasma through a differential energy balance equation. In

general, the change in total internal energy of the plasma

with respect to time is equal to the heat flux in minus the

heat flux out of the plasma, plus heat coming from any

internal source minus heat lost to any internal sink, minus

work done by the expanding material. This is expressed in

*the equation:

7



dU/dt = Qlin- Q-lx4u- Qqu - Q Oak (b)

where the dot over a variable denotes differentiation with

respect to time. Since there is no flux of radiation into

the body from the outside universe, the term for heat flux

in is zero. Regarding the source term, the supply of energy

to heat the plasma has stopped (by assumption) so this term

is also zero. The heat sink term represents energy absorbed

by the material particles in endothermic reactions, but it

is assumed that the particles do not react, therefore this

term vanishes. One more term vanishes because the volume

remains constant with time: the work term, which can be

defined as pressure times the change in volume with respect

to time.

Now the change in internal energy per unit time is that

which radiates out through the surface area in the same

amount of time:

dU/dt = -Qfi=+a t = -aTA (2)

where UTI is the energy per unit area emitted per unit time

from the total surface area A ; Ta is the surface tempera-

ture; and 0 is the Stefan-Boltzmann constant. In the above

equation the minus sign signifies a loss of energy to the

surrounding universe. The term qTt is a result of Stefan's

law for black body radiation (2:4), and is equivalent to the

Planck distribution of energy per unit area per unit time

DAET,) integrated over all photon energies E-hV (h is

8



Planck's constant and v is frequency) at temperature T,.

This surface temperature is the same as the average internal

temperature at time t, and is hereby designated T(t).

Concept of the Time-Integrated Spectrum

Let

P p,E.T(O) - p(E.T1) (3)

be the Planck function that describes the energy distribu-

tion per unit area per unit time so that

PA(Elt)AdE = a[T(t)]4A (4)

If the hot body starts with initial internal energy Ui and

is allowed to cool forever, it will eventually lose all its

energy such that the following expression holds true:

Ui= faE[T(t)]4Adt (5)

hence

F - ffPA(Et)AdE dt = Ui (6)

and defining

f(E) - fp A(E.t)Adt (7)

equation (7) is the distribution function that describes the

time-integrated spectrum, which upon normalizing to unit

area is given by

A(E)- f(g) (8)

9



Change of Variables from Time to Temoerature

So far, the development of the time-integrated spectrum

has dealt explicitly with the time behavior of the radiation

energy distribution, with temperature being a function of

time. This requires knowledge of how the temperature varies

with time, which may not be well known. An equivalent and

easier approach is to determine the behavior as a function

of temperature so that the integration of equation (7) is

performed over temperature instead of time. This approach

eliminates the need to know the time behavior explicitly,

and the end result is the same: the fluence spectrum (or

time-integrated spectrum).

Referring back to equation (7), the integration variable

is changed from time to temperature:

f(F) - J pA(J,T)A .dT (9)

where the initial temperature T, corresponds to tiO , and

the final temperature Tf corresponds to tt-= which may be

considered as T,=O , and

PA(E.T)A 4 (10)

is the Planck distribution of energy per unit time. Equa-

tion (10) is adapted from (2:24) in terms of energy instead

of frequency. h is Planck's constant, C is the speed of

light in a vacuum, and k is Boltzmann's constant.

10



Before proceeding further, dt/dT in equation (9) can be

transformed by considering the change in total internal

energy as a total derivative with respect to time, volume,

and temperature in which the concept of heat capacity is

introduced:

dt t Vdt ) dl) 
(+1)

In the first term on the right hand side, LU/dR is zero

because the internal energy does not change with just the

passage of time and no other influences. In the second

term, there is no change in volume V as stated before, so

this term is zero. Only the third term remains which con-

tains within it the definition of heat capacity, that is

IC(T) heat capacity = 0'V/0(12)

which is the change in energy per unit change in tempera-

ture. Combining equations (2), (11), and (12) and rearrang-

ing terms results in the desired transformation for d!/dT :

dt/dT = -C(T)iT 4 A (13)

Now equation (9) becomes

if C T ) P A(E, T) A

f(E) = -TA dT (14)fT aT4A

Let PA(E,T)A be normalized to unit area in the following

manner with T as a parameter:

11



E PA(ET) Ae (E oT) = T 4  A (15)

ca W-j e t T  (16)

I = 15c'hs (2:24) (17)

(;T) (T) 4 e( r -  (18)

fc(E;T)dE = 1 (19)

Incorporating into equation (14) and interchanging the

order of integration yields:

f r,

f(E) - J !(E;T)C(T)dT (20)

This expression says that the time-integrated spectrum at

0 photon energy E has a value equal to the sum of the released

energy with a certain distribution at each temperature T

from the initial temperature down to zero. By integrating

equation (20) over all energy E and dividing the result into

equation (20), the result is the normalized fluence spectrum

equivalent to equation (8) at any energy E :

E) f(E) = f (E)(21)
faf(E)dE F

Heat Capacity

Up to this point, we have explicitly defined the normal-

ized Planck function O(E;T) in equation (18). but have not

explicitly defined the heat capacity CCT) needed to

12



calculate the time-integrated spectrum. Since heat capacity

is the change in internal energy with respect to tempera-

ture, a question to ask is how the internal energy of the

plasma varies with temperature. A general formula for the

total internal energy U as a function of temperature is:

U(T) = U,(T) + U,(T) + U (T) (22)

where Um is the material energy; UF is the internal radi-

ation energy; and UL is the energy due to latent heats of

transformation. (Ag is comprised of several terms that

describe the energy required to change the material state:

that from solid to liquid (latent heat of fusion), from liq-

uid to vapor (latent heat of vaporization), and once in the

vapor state, to ionize or strip off electrons from the atoms

(latent heat of ionization). Specific forms of CCT) are

deferred to the corresponding chapters that talk about how

each term in equation (22) affects the fluence spectrum

through CT)

13



III. Numerical Approximation

Equations (20) and (21) , representing the non-

normalized and normalized fluence spectrum, respectively,

are difficult to solve andlytically. Therefore, numerical

methods are employed with the use of a computer to approxi-

mate the solutions to these equations.

For convenience, temperature is redefined as 0-& ,

having units of energy. Both 6 and S are expressed in KeV

throughout the remainder of the paper.

Simpson's rule of integration is used for both integra-

tion over temperature and energy, with the limits of inte-

gration altered slightly from the original limits. For the

lower limits, 0 and 9 cannot assume the value of zero

because either condition causes division by zero in equa-

tions (20) and (21). Therefore, the lowest value for G is a

final temperature of 6(>O , and that for S is E,,.>O

An upper limit of E=- is likewise impossible to evaluate

numerically in a computer solution, thus E,,h<- . In fact,

Et,b does not need to be more than about 3 81 because the

upper tail of the spectrum (plot of T(E) or 9CE) versus H)

always decreases monotonically to zero by 9=-, for all forms

of C(9) considered in this study, and the area under the tail

in this region is negligible compared to the area beneath

the spectrum curve at energies less than 309,.

0
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Another problem arises with how large a number the com-

puter can handle. In particular, a program execution error

occurs if the ratio E19 in the exponential term in the

denominator of D(E;G) is too large (approximately 709 encoun-

tered in this study). This condition occurs at all energies

when 94cE . Again, for the forms of C(C)presented in this

study, and at any fixed H in the range O<E<30 , the

integrand of equation (20) adds a negligible contribution to

ICE) at temperatures below about O=E/50

Taking into account the above observations, the numer-

ical approximation for equation (20) is:

ro1

f(E) ' j A(E;e)C(e)d, O = EI/SO>o (23)

Note that the lower temperature limit changes with 9 . The0
approximation for equation (21) is:

f(E) f(E) >0
FRE 

low

• ,. bl ab

E bib =3091 < .l (24)

For the above two equations,

= n4 4 E'j (25)n( e 494e let /@ - I (I

and C( ):dUid; take on the specific forms addressed in the

next several chapters.

1
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IV. Model I - Radiative Cooling with Constant,

0Material Heat Capacity, but No Radiation Heat Capacity

In this chapter, we look at a description of the model;

develop a specific form of heat capacity to be used in equa-

tion (23); predict the time-integrated spectrum behavior

with a collection of one-temperature Planckians; and present

and discuss the results of calculating the time-integrated

spectrum for three different initial temperatures.

Model 1 Description

The first model deals only with the material particles

losing kinetic energy. That kinetic energy is converted to

radiation energy which radiates into space from the surface

of the plasma volume. It does so at a rate that corresponds

to the release of an equal amount of energy for every degree

drop in temperature. In other words, the material heat

capacity is constant; it is independent of temperature. The

internal radiation density, on the other hand, must be neg-

ligible compared to the material energy density to assume

there is little or no radiation heat capacity, that is to

say, very little loss of internal radiation energy per

degree change in temperature. In the absence of internal

radiation energy (U,(9)"O) and internal energy to ionize to

any degree most of the atoms ( UV1(.)- ULMM-) O , where "be"

stands for binding energy), this model, in general, repre-

sents cooling behavior at temperatures much lower than about

1
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0.001 KeV (on the order of 100,000 K), the temperature at

which U,(G) and Ub,(O) become significant compared to the mate-

rial energy, U.(O) . This will become evident in chapters VI

and VII where U,(G) and Ub.(O) are discussed relative to U.(8) ,

respectively. However, the model is extended to higher tem-

peratures to observe the cooling behavior of this limiting

case. This simple model is used to demonstrate the

methodology and, as a limiting case, to show how very non-

Planckian the fluence spectrum can be.

Heat Capacity

The expression for C(8), or actually just C since the

heat capacity in this case is independent of temperature, is

derived from the expression for the material energy only,

U.CO) in equation (22). Assuming the material particles

exhibit a Maxwell-Boltzmann distribution in energy, the

average kinetic energy of any particle is (3/2)WT=(3/2)

(3:12). Multiplying this by the total number of particles,

and dividing by the volume gives the material energy den-

sity:

LU.(9) - Um(@)/V = N,,(312)e (26)

where U. is the material energy density; and Nv is the

atomic number density. Taking the derivative with respect

to temperature gives the heat capacity per unit volume:

C- W CIV = du./dO = N,(3/2) (27)

17



which is constant, provided the number density remains con-

stant throuyhout the cooling process. (Ionization is disre-

garded until Model 4). Replacing C, for C(9) in equation

(23), it is possible to bring C, outside the integral sign

as a constant so that equation (24) becomes:

CJ O(E;)dG
1b ,,gh o (28)

, flo f? (E;G)dG dE

Because C., cancels in the above equation, it can assume any

constant value without loss of generality. Therefore, C,-l

to simplify calculation of equation (28).

Planckian Spectra

Note that with C,-0 , the numerator of equation (28)

becomes a sum of normalized Planckians at different tempera-

tures over the full range of E . Figure 2 displays several

normalized Planckian spectra at various temperatures

calculated from equation (25). T1s figure serves to show

the expected trend for the curve of the fluence spectrum.

Curve e, which is not normalized, is the sum of curves a

through d, and represents the approximate shape of the flu-

ence spectrum. It shows that as the temperature continues

to drop, a greater percentage of the total energy is carried

away by lower energy photons or, equivalently, lower fre-

quency photons.

18



: Temperature (KeVE - - curve a 1.0

n2 - curve b = 0.5
d 

- curve c -0.2

2 - curve d -0.1
- curve a = sum

D
e 1.5
n
S c

t
Y 0.5

0-
0 1 2 3 4 5 6 7 8 9 10

Photon Energy (KeV)

Fig. 2. Planckian Spectra a - d
Normalized to Unit Area

Mathematically speaking, the curve should continue to

infinity by 9=0 for the following reason. If E=@ in

equation (25), then the portion of the equation equal to

i5/(naexp(E/9)-i) remains constant, even as both F and G

approach zero. However, G4 in the denominator becomes the

dominant factor causing 0 to approach infinity as it

approaches zero. For any fixed 0 greater than zero, and as

E approaches zero, the E3 term in the numerator decreases

faster than the denominator, and is the reason why all of

the above spectra diminish to zero by S*=O . Adding more

Planckians to Figure 2 would enlarge curve e, but the curve

should retain its approximate shape. Lower temperature

Planckians added successively to the left of curve d would

add diminishing areas to the total area underneath curve e.

19



Thus, when curve e is normalized to unit area, the peak

should reach some finite limit at the left edge of the

graph.

Time-Integrated Spectra

Time-integrated spectra with initial temperatures of

0.02, 1, and 10 KeV are calculated from equation (28) using

the computer program listed in Appendix A.

Figure 3 shows the time-integrated spectrum with an ini-

tial temperature of 1 KeV.

0.45

0.4
E
n 0.35
e
r 0.3-
g
Y 0.25

D 0.2
e
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Fig. 3. Model 1 Time-Integrated Spectrum
Normalized to Unit Area; Gj=l KeV

Indeed, the spectrum curve has roughly the same shape as

curve e in Figure 2 from the peak to the upper end of the

spectrum, and the peak approaches a limiting value of about
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0.37 relative units of energy density. Upon closer examina-

tion at the left edge of the graph shown in Figure 4, the

spectrum curve rolls over at about E-0.01 to drop to just

less than 0.05 near E=0
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Fig. 4. Model 1 Time-Integrated Spectrum
(Magnified View) Normalized to

Unit Area; O'=l KeV

Actually, E=0.001 was the value for the lower integration

limit in equation (28) for this example. The curve would in

fact continue to approach zero at the left end as E

approaches zero. The use of E=eO/l0oo instead of another

value even closer to zero is justified because the approxi-

mately triangular-shaped area to the left of the curve from

the ordinate value of 0.37 down to zero would be a

negligible addition to the area under the curve (1/2 X 0.37

X 0.01) = 0.00185 or about 0.2% compared to 1). The small

*peak at the left end in Figure 4 is an artifact of the
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calculation that becomes more narrow and displaced to the

left as the temperature mesh, A@, is made smaller, so in

essence, it may be disregarded.

Spectra for initial temperatures of 0.02 and 10 KeV are

shown, respectively, in Figures 5 and 6. Comparison of all

three time-integrated spectra reveals, in general, that the

spectrum shifts toward lower energies for lower initial tem-

peratures and toward higher energies for higher initial tem-

peratures, the same as for single-temperature Planckians.

For instance, considering the areas under the curves,

practically 100% of the total energy is carried away from

the plasma by photons in the range 0 to 1 KeV when 81-0.02

KeV, about 33% of the energy when 91=1 KeV, and only 3%

when 9j-10 KeV. Another feature of the time-integrated

spectra similar to Planckian spectra is the fact that nearly

all of the internal energy is radiated away by photons hav-

ing energies less than IO80 KeV.

22



0.045

E0.04-
0~ .035-

r 0.03-
9
Y 0.025-
D 0.02-

n 0.015-

1:0.01-
y 0.0051

0*
0 10 20 30 40 50 60 70 80 90 100

Photon Energy (KeV)

Fig. 5. Model 1 Timr'-lnt.eqrated Spectrum
Normalized to Unit Area; 8,-10 KeV

22-

* 20-

n 18-
e 16-

g 14-

>' 12-

D 10-
e
n 8-
S

t 4 -
y 2

0
o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Photon Energy (Key)

Fig. 6. Model 1 Time-Integrated Spectrum
Normalized to Unit Area; 01 =0.02 KeV

Significant differences between the two types of spectra

are the fraction of energy radiated at the lower end of the
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spectrum and the most probable energy for photons. For any

Planckian, approximately 1/30 of the total plasma energy is

radiated at energies below its temperature, 0 KeV, whereas

for any Model 1 time-integrated spectrum, about ten times

the Planckian fraction or one third of the total energy is

radiated at energies below its initial temperature, 0, KeV.

Over time, the most probable energy for photons of a con-

stant temperature Planckian emitter is E=2.820 , corre-

sponding to the energy location of the peak. For the

cooling Planckian emitter, the most probable energy for

photons shifts toward lower energies over time, the time-

integrated spectrum showing it near E=0

Summary

Model 1 represents an upper bounding case for energy

density at the low end of the spectrum for the cooling

Planckian emitter. With all of its energy in the form of

material kinetic energy and the heat capacity remaining con-

stant throughout the cooling process, there is an upper

limit to the fraction of total energy radiated at the lower

end of the spectrum. It turns out that density does not

affect the normalized spectrum, as long as there exits some

amount of material. If material energy constitutes a sig-

nificant portion of the total energy of a cooling body, its

most influential effect on the time-integrated spectrum

would be seen at lower temperatures at the lower end of the

spectrum.
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In the next chapter we look at a model of the cooling

plasma containing only radiation energy to observe its

effects upon the fluence spectrum.
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V. Model 2 - Radiative Cooling with Temperature Consistent,

Radiation Heat Capacity, but No Material Heat Capacity

We looked at the effect of including only material

energy in the cooling emitter in the last chapter. Now we

take a look at the effect of including only radiation

energy.

Model 2 Description

The second model deals with the plasma cooling through

the loss of radiation energy only. Either the material par-

ticles are at rest, with their kinetic energy being close to

zero (but this would assume the body has already cooled to a

temperature near 0 KeV), or else the material energy density

is negligible compared to the radiation energy density at

higher temperatures, which is more likely the case. At very

high temperatures, well above the point where the atoms com-

4letely ionize, a drop in temperature to a point still above

complete ionization would result in no change in heat

capacity due solely to ionization. So this model seems

appropriate at very high temperatures. Nevertheless, the

model is extended to low temperatures to observe the cooling

behavior there also, and binding energy is not taken into

account.
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Heat Capacity

The heat capacity in this approximation is dependent on

temperature because of the high degree of dependence that

U,(8) has on temperature. The form for radiation energy den-

sity is:

U.(G) - U,(g)/V = c94  (29)

where a is the radiation constant equal to 8.56E+28 in units

of l/(KeV-m)3 (3:22). The heat capacity is then:

c,(O) - C(O)iV = du,(e)/de = 4aO' (30)

Replacing C(8) in equation (23) with C,(8) and bringing the

constant, 4a , outside the integral in the numerator and

denominator of equation (24), it is seen that the constants

cancel to give:

§(E) ,,,,fe A(E;G)e'de (31)
f,'° I" of(", )ed

Note that Cv(8) could just as well be 03 without loss of

generality, which is the form of heat capacity used to cal-

culate the fluence spectrum for Model 2.

Because the heat capacity has a P dependence, more

energy is released from the plasma volume per degree drop in

temperature at higher temperatures than at lower ones. Pho-

tons of higher energy should carry away more of the total

energy than in the case of constant material heat capacity.
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Correspondingly, the peak of the spectrum should, in gen-

eral, shift toward higher energies, but the overall spectrum

behavior must be determined from the heat capacity in

conjunction with the function D(E;O)

Time-Integrated Spectra

Predicting the shape of the spectrum can be done by

examining the integrand in the numerator of equation (31)

with D,. 't defined in equation (25):

= (32)

In the limiting case at the low end of the spectrum, with

E= and E approaching zero, the entire expression is con-

stant except for a remaining E 2 term in the numerator.

Therefore, as p2 pproaches zero, the integrand approaches

zero. At tte nigh end of the spectrum with 9<9,< =  , and E

approaching infinity, the exponential in the denominator

approaches infinity faster than the numerator; hence, the

integrand again approaches zero. In between the two limits,

a peak should occur at the same most probable energy as a

Planckian with fixed temperature 6 (E=2.826), and the entire

curve is scaled in height by the parameter e3 as seen in

the left hand side of equation (32).

Figure 7 shows the effect of adding several of the func-

tions given by equation (32) for a few different tempera-

tures. Curve d simulates approximately what the fluence

spectrum might look like for a cooling body with a starting
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temperature of I KeV. Notice that the peak has shifted to a

higher energy as discussed above, but is left of the peak

for a Planckian with temperature 91. The second condition

follows from the fact that as the body cools the energy

distribution shifts to lower energies. Photons are most

likely to have energies that are nearly equivalent to the

body temperature.
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Fig. 7. Planckian Spectra a - c Normalized
to Unit Area and Multiplied by 83

Furthermore, the second condition means there is an upper

limit to the fraction of total energy that can be radiated

at the high end of the spectrum. For example, a Planckian

with temperature 68 KeV radiates a maximum of about 95.6% (or

29/30) of the total energy at photon energies higher than 01

KeV. This upper limit should hold true for any time-

integrated spectrum.

0
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The time-integrated spectra for Model 2 are calculated

from equation (31), again using the computer program in

Appendix A with the subroutine for computing heat capacity

changed to reflect C,(O)=0 3  . Figures 8 - 10 depict the

calculated spectra with the same three initial temperatures

used in Model 1. (Figure 10 also includes a comparison with

Planckian spectra, which is discussed shortly.)
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All three time-integrated spectra have the same shape on

a relative scale, but are located at different points if
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placed on the same scale. The same trend occurs as in Fig-

ure I whi,ro the hotter spectra have more of their energy

density at higher photon energies. Their peik, ,jre smaller

to accommodate the same area under the curves, and shifted

to the right, to reflect the most probable energies being

within a factor of three from the starting temperatures.

Just the opposite is true of the colder spectra; the peaks

grow taller and shift to the left for the same reasons.

Comparison with Plankian Spectra

Consider the time-integrated spectrum in Figure 10 with

a starting temperature of 1 KeV. The shape of the spectrum

is similar to a Planckian, but as anticipated, the peak is

displaced to the left of that for a 1 KeV Planckian (the
Planckian shown is one having 9= KeV) The peak for

the time-integrated spectrum is located at " =-T com-
- %of v1 com-

pared to L,-- , for the corresponding Planckian peak. and

the cooling body radiates about 92% of its total energy at

energies above -V compared to 96% for the Planckian

emitter always at a constant temperature.

Figure 10 shows the difference in shape between both

types of spectra having both their peaks at the same energy,

5 . It can be seen that one Planckian roughly fits the

time-integrated spectrum, whereas a combination of two

Planckians with different temperatures practically matches
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the spectrum. Appendix B contains a computer program to do

the curve fitting using two Planckian basis functions. The

equations for the fit are given by:

P, E)= EP[exp(El91 )- I] (33)

PZ(E) = E"/[exp(E/2)- 1] (34)

btit(E) = aP,(E) + a2P2 (E) (35)

The measure of the fit is given by the sum of the square of

the errors:

SSE = Z((E) - 6,,t(E)); (36)

where 9(g) is the time-integrated spectrum value from equa-

tion (24), and OrttCE) is the curve-fit value given by equa-

tion (35). From this result, the cooling body can be

thought of as radiating at two temperatures, both below the

initial temperature, instead of many temperatures over the

course of time.

Summary

Model 2 represents an extreme bound in the opposite

direction to Model 1. It shows there is an upper limit to

the fraction of total energy that can be radiated at the

high end of the spectrum. If the cooling body contains a

significant portion of radiation energy, its effect would be

seen at higher temperatures and energies than the case for

constant material heat capacity, and in fact should be the

dominant factor at the high temperatures and energies under
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consideration, as will be seen in the next two chapters.
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VI. Model 3 - Radiative Cooling with Constant, Material

Heat Capacity and Temperature Consistent, Radiation Heat

Capacity

This chapter combines the effects of both material and

radiation energy in the cooling body. In the previous two

models, temperature is the only parameter that influences

the energy distribution, but now density becomes important,

as we shall see.

Model 3 Description

The third model for the cooling body takes into account

the loss of kinetic energy from the material particles and

the loss of radiation energy or those photons that escape

any further interaction within the plasma. This model could

be valid at low temperatures and at very high temperatures,

but excludes the range of intermediate temperatures where

the ionization state of the atoms is changing with tempera-

ture. Binding energy is not included, but the intermediate

range of temperatures is, so that, as before, cooling

behavior can be observed here too. The densities considered

may be somewhat high for plasmas in fusion experiments; how-

ever, they are chosen to illustrate noticeable effects for

spectra with initial temperatures of 0.02 and I KeV.
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Heat Capacitv

Both the formula for material energy density from Model

1 and the formula for radiation energy density from Model 2

comprise the total internal energy density for Model 3:

U(O) - U(O)/V = + (37)

= N,(312)9 + (94 (38)

Notice here why the effect due to material energy is domi-

nant at low temperatures, and the effect due to radiation

energy is dominant at high temperatures. Both Nv and a are

about the same order of magnitude for nominal material den-

sities, but a4 is much less than 8 for 8I KeV, and it is

much greater than e for 6)bl KeV. The two terms are equal

at approximately 8-0.56 KeV (6.5 million K) when N,-IEP28

atoms/m.

The derivative of equation (38) with respect to tempera-

ture is the expression for heat capacity for Model 3:

C,(9) - C(O)/V - dU(G)/dg C39)

= Nv(3/2) + 4ae 3  (40)

Time-Integrated Spectra

Substituting C,(8) for C(O) in equation (24) results in

the equation to compute the time-integrated spectrum for

this model:

J5) (E:o)Cf(()d1

r Ibl 0(E;A)Cv(A)de dE
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All the spectra for Model 3 are calculated from equation

(41) using the computer program in Appendix A, with the sub-

routine to compute heat capacity changed to reflect C,(9) in

equation (40).

The predicted cooling behavior depends on the tempera-

ture. At high initial temperatures, most of the energy loss

is due to the change in internal radiation energy.

Therefore, the heat capacity has an almost pure 03 depen-

dence like that of Model 2, so the spectrum should resemble

a Model 2 spectrum with the same high initial temperature.

The peak, however, should be displaced more to the left

because as the plasma cools, more energy is lost from mate-

rial than would be the case for radiation only. Such is the

case for the 10 KeV spectrum of a plasma with density equal

to IE-+-27 atoms/m'; however, the shift is too small to show

any appreciablevifference with the Model 2 spectrum in Fig-

ure 8. For low initial temperatures, most of the energy

loss is due to the change in material energy. The heat

capacity is nearly c:o,,L,int, 3nd becomes more so as the

plasma cools. In this case, the spectrum should resemhlf- a

Model 1 spectrum having the same initial temperature, but

with the peak shifted right because of the energy losses

from internal radiation at temperatures closer to the ini-

tial temperature. The 0.02 KeV spectrum behaves thus, but

again has a shift too small to show; it is almost identical

to the spectrum in Figure 9 in Chapter V.

0
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Cooling behavior from intermediate starting temperatures

should show noticeable effects due to both material and

radiation energy. The peak should fall between those of the

pure material case and the pure radiation case for the same

starting temperature. Figure 11 gives an example of this

behavior, with the Model 3 spectrum calculated for a plasma

density of 1E+29 atoms/m3 .
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n 0.35- - c - Model 3

r 0.3 \IE+27 pucuucte/m

Y 0.25-

D 0.2-
e
n 0.15
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0 1 2 3 4 5 6 7 8 9 10
Photon Energy (KeV)

Fig. 11. Model 1, 2, and 3 Time-Integrated Spectra
Normalized to Unit Area; ,=i KeV

Note that the left end of the Model 3 spectrum approaches a

value greater than zero because of the material contribution

to the loss of energy. This becomes more pronounced for

colder 9 , while for hotter 'O the value approaches zero.

The predicted cooling behavior depends on density as

well. Higher densities mean more material energy which

forces the heat capacity to become more constant in nature
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beginning at higher temperatures. The effect of increasing

the density causes the lower end of the spectrum to approach

its peak limiting value for pure material energy, as shown

in Figure 12. A density of 1E+29 (not shown) versus 1E+27

atoms/m 3 resulted in no noticeable change in the spectrum.

See Figure 6 in Chapter IV for the limiting case.

22

20 Derwity (p rtk1I/m3)
E 18 - o- 1E+27n

e 16 - b - 1E+25

r
g 14
Y 12

D 10
e
n 8
s 6

t 4
Y2

2
0 ,I

0 0.05 0.1 0.15 0.2
Photon Energy (KeY)
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Lower densities mean less material energy, and the

nature of the heat capacity becomes more like the case for

pure radiation. Figure 13 is a better example of what low-

ering the density does; the spectrum becomes more like the

pure radiation case shown in Figure 11 , or Figure 10 in

Chapter V.
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Comparison with Planckian Spectra

Chapter V showed that two Planckian basis functions fit

the fluence spectra of Model 2 much better than a single

basis function. This is generally true for any spectrum

having a shape closely resembling that for the pure radi-

ation case. However, the curve-fit becomes worse for low

temperature or high density Model 3 spectra as they become

similar in shape to Model 1 spectra. Figures 14 and 15

support these conclusions for different densities.
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Summary

0 Model 3 represents a more realistic theory of cooling

behavior between the extreme bounds of Model 1 and 2. The

fluence spectrum generated by Model 3 combines effects of

both material and radiation energy losses which place the

most probable energy somewhere between the two extremes,

depending on density and initial temperature of the plasma.

In the case of high densities or low temperatures, Model 3

degenerates into the same behavior as Model 1; the heat

capacity is nearly constant. At low densities or high tem-

peratures, it becomes like Model 2; the heat capacity

behaves as (
3 . Although more realistic, this model is

simplistic and incomplete without taking into account the

release of energy as the ionization state falls for the ions0
in the cooling plasma. This aspect is covered in the next

chapter.

0
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VII. Model 4 - Radiative Coolinq with Temperature Consis-

tent Heat Capacity

Model 4 concentrates on how material composition affects

the fluence spectrum of the cooling Planckian emitter. The

form of material energy presented in Model i is changed to

reflect the variable number of free electrons present in the

plasma as the temperature falls and they bind to the ions.

Binding energy is accounted for in yet another internal

energy term to calculate the heat capacity. The results

include variation in initial temperature and t,pe of single

element material, but the general effect due to variation in

initial density is left to the previous chapter.

Model 4 Description

The fourth model describes the cooling plasma through

the loss of three types of internal energy: material

energy, radiation energy, and binding energy, all functions

of temperature. As the temperature falls, free electrons in

the plasma lose kinetic energy and are captured through

electrostatic attraction by the ions, which eventually fill

all electron shells to become neutral atoms. The shell

structure is governed by:

/ = 2j2, 1=12,... (42)

where % is the total number of electrons allowed in princi-

pal quantum state I . Electrons are assumed to fill inner

vacancies first and move progressively away from the nucleus
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to fill outer vacancies last. When an electron is captured,

it proceeds directly to the next unfilled vacancy, emitting

a photon of energy equal to the absolute difference between

the energy level of the vacancy just filled and the contin-

uum. No allowance is made for intermediate excited states.

The entire population of ions is considered to be at the

same ionization state; however, fractional numbers of bound

electrons are permitted to account for a distribution of

ionization states encountered in real physical situations.

This model applies primarily for all temperatures above the

point where the material vaporizes. But as long as the

initial temperature is hot enough to include some degree of

ionization, then energy losses attributable to latent heats

of vaporization and fusion are negligible compared to bind-

ing energy, and the model is valid at all temperatures.

There is a restriction, however, on the upper limit for

density, depending on type of material, because Model 4 uses

a form of the Saha equation that assumes the free electrons

are nondegenerate.

BindinQ Energy

Model 4 assumes the binding energy for outer electrons

is less than that for inner electrons, which is consistent

with the idea that inner electrons partially mask the

attractive force of the nucleus. The energy level or ion-

ization potential for each bound electron is determined from

the following equation (3:170):
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Ej = -I +. j= 12.... (43)O !H) 2R1 ( 5 R2

where IH is the ionization potential for an electron in the

ground state of a hydrogen atom; 7; is the effective nuclear

charge as seen by thE electron in the .11t.. energy state; M,

is the number of free electrons per atom; a is the elec-

tronic charge of an electron; . is the radius of the spheri-

cal region surrounding the ion which contains zero net

charge, i.e., f,, free electrons; and Cr, is the mean square

radius of the electron orbit. The left hand term gives the

energy levels for a hydrogen-like atom with atomic number

.s, while the right hand term corrects for interactions

between bound and free electrons, free electrons with the

ion, and free electrons with free electrons, and adjusts the

zero energy level so that all free electrons within the ion

sphere maintain positive energy. (Bound electrons have neg-

ative energy). For convenience, equation (43) computes E,

in units of eV instead of Rydbergs if 1, = 13.61 eV and the

right hand term is multiplied by i IrA.rr f n'7 -I a I

with -0 , the vacuum permittivity, in F/m and R in meters.

The equation for effective nuclear charge is (3:168):

Z,= z - Ztr - n,'- -72a (44)

where Z is the element atomic number: fk and n., are the

number of electrons in the corresponding shells scr ,r-inq

0
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the nuclear charge from the electron in question; and a., and

0,, are Slater screening constants (3:169). To find the mean

square radius (3:170):

(r, - c'1 (k + X) (45)

where ao is the first Bohr radius for the hydrogen atom in

meters. Finally, the ion's sphere of influence has a radius

given by the relationship (3:170):

41
-,R 3  = (46)
3 N

where N, is the atomic number density.

From equation (43) and (46) it is seen that density is

one factor that determines the binding energy, -E ,

required to remove the electron from the ion to become a

free electron. A plot of binding energy, -E, , versus den-

sity, N, , in Figure 16 for the outer shell of electrons in

carbon reveals that only densities less than 1E+28 atoms/mn

satisfy the requirement that it takes more energy to remove

the next electron than the previous one. Above this limit,

the electron density is so high that the electrons become

degenerate; that is, more than one electron occupies the

same energy level. This upper density limit differs with

atomic number Z , but for the four elements chosen, carbon,

aluminum, copper, and plutonium, N. = IE+27 atoms/m"' is

satisfactory for comparison of their spectra.

46



0 B2

151
n
d 10
n 5 2

g 0

n 33
e -5

r Carbon Electron
g -10 - 1 (outermost) 4
Y -2
e -15 - .3
V -4

-20 , ...

0 2 4 6 8 10 12 14 16 18 20
Number Density x 1E+28 (atoms/m)

Fig. 16. Binding Energy versus Atomic Number
Density for Carbon

The binding energy required to remove the outermost

electron from an ion or neutral atom can be related to tem-

perature by the following expression, taken from reference

(4), which is derived from the Saha equation (3:164) for a

plasma containing a single Z material:

e: 2---- / [ z - ] . J 1.,2... (47)

N =,N, (48)

=Z - n1 . - 12-1) (49)

where m,=5.685E-15 KeV-s2 /m" is the mass of an electron; N.

is the electron density in 1/mO ; n=4.136E-18 KeV-s is

Planck's constant; and E, and 9 are in KeV. If N. and r

are given, then E, and 9 can be calculated from equations

(43) - (49). 0 is the temperature that corresponds to n,
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free electrons per atom. -E, is the energy needed to free

the next electron to be added to the n, free electrons. It

i, not included in the total binding energy required to

remove n, electrons, that is, the sum of the binding ener-

gies to remove each of the individual n, electrons.

So at temperature 6 , there are N,nr free electrons per

unit volume in the plasma, and the total binding energy is:

eO) - UnIV = -NYZE(nt,()) (50)

where the sum starts with 0 KeV for nt-CO and adds the

binding energy for each additional electron removed from the

bound system. The function nf(O) is linearly interpolated

from a table of values for nt versus 9 calculated from equa-

tions (43) - (49) for each element. A graph of a, versus G

in Figure 17 for copper, that is typical of other elements,

shows that equation (47) breaks down for transitions between

electron shells when a, approaches zero.

Because it is physically impossible to have more than

one value of a, electrons free from the atom at one tempera-

ture (which corresponds to one instant in time), the graph

is smoothed as shown in Figure 18 by removing some of the

points. In general, all elements have this "S"-shaped

curve, and full ionization occurs at increasing temperatures

for i creasing Z.
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The function of total binding energy versus number of

free electrons per atom is linearly interpolated from a
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table also. Examples of both tables are given in Appendix A

for copper. A typical graph of total binding energy versus

temperature is shown in Figure 19. All elements have this

irregular, "S"-shaped curve, with the abrupt changes in

slope caused by electron shell transitions and significant

changes in slope from the corresponding free electron versus

temperature curves. In general, total binding energy

increases with temperature and increasing Z.
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Appendix C has two computer programs to compute: I) the

binding energy for a particular electron, and 2) the corre-

sponding temperature, from equations (43) - (49).

Material Energy

The material energy present in the plasma at any given

time is dependent on the temperature and the number of free
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particles which is decreasing because electrons bind to the

ions as the temperature falls. Therefore, the material

energy term is changed to reflect, in addition to the ions,

the number of free electrons present as a function of tem-

perature, with each particle having energy equal to (3/2)0

-M W N,(1 + nt(O))(3/2)9 (51)

Heat Capacity

The heat capacity is calculated from the expression for

internal energy density which now has the form:

u(G) = N,(1 + na(G))(3/2)0 + aS4 + N,-E(n(@))X52)

Because nt(G) is different for every element and somewhat

difficult to express as an analytical function, the deriv-

ative du/dg is approximated by the change in internal energy

over a small change in temperature 60 as given by:

A U IN (I
-V z (0 -9 - u( 9-~~ / A9 (53)

To get a feel for the magnitude of the change in binding

energy compared to the change in material energy per temper-

ature change of 1 KeV consider the graphs for copper again

in Figures 18 and 19. In Figure 18, the number of free

electrons at a temperature of i KeV is about 28, and at 0.03

KeV it is about 7. The change in material energy per KeV

per atom, then, is:
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-- = 1+28 2l - (1+7)2(o.o3) / (1-0.o3)

= 44 (KeV/KeV-atom)

In Figure 19, the binding energy at e=i KeY is about 27 KeY,

and at 8-0.03 KeV it is 1 KeV. Hence, the change in binding

energy per KeV per atom is:

Au e

NIDA - (27-1) / (1-0.03) = 27 (KeV/KeV-atom)

The binding energy contributes approximately 60% as much

change in energy to the heat capacity as does the material

energy. For the other three elements, the ratio is approxi-

mately in the range of 30% - 110% . Thus, the change in

binding energy is the same order of magnitude as the change

in material energy.0
Time-Integrated Spectra

The time-integrated spectra for Model 4 are calculated

from equation (52) and (53) substituted into equation (41)

from Chapter VI. Appendix A has the computer program to do

this with the appropriate change to C, in the subroutine to

compute heat capacity.

The contribution to heat capacity from material energy

in Model 4 is an order of magnitude or greater, depending on

Z, than for Model 3, at temperatures above 0.1 KeV when the

atomic number density N, is the same. Add to this roughly

the same contribution from binding energy, and the influence

on the time-integrated spectrum due to the combined change
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in material and binding energy is much greater than Model 3.

The combined effect is most significant in the temperature

range where most of the electron binding occurs, generally

between 0.01 and 1 KeV for elements from carbon to pluto-

nium. Spectra having initial temperatures of 1 KeV should

show significant increases in energy density near the low

end of the spectrum with a cor-esponding shift in the main

peaks to the left, as compared to Model 3 spectra with the

same density and temperature parameters. This also means

the energy density should increase near the left end with

increasing Z. Figure 20 portrays the results of four flu-

ence spectra of differing material, with 9j=l KeV and the

same atomic number density, N. = 1E+27 atoms/m 3 .

~0.35
0,3 / - 0 - DlUtofliurn

Ei 0.3 - b - coppernb

d 
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r 0.25N.c - d - corbon
g
y 0.2 b
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o .1

y 0.05

0 i i i

0 1 2 3 4 5 6 7 8 9 10
Photon Energy (KeV)

Fig. 20. Comparison of Model 4 Spectra

Normalized to Unit Area; @,=i KeV,
N, = 1E+27 atoms/m 3
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One striking feature of these Model 4 specta is evidence

of a small peak or hump at low energies caused by the change

in material and binding energy, but primarily binding

energy. (This peak is not due to the same anomaly noted in

Model 1 at the lower end of the spectrum because a smaller

temperature mesh does not move the peak closer to E=O ).

The peak is more prominent for higher Z because more inner

electrons bind per degree change in temperature, releasing

more energy, than for lower Z. The exception in Figure 20

is plutonium, and the reason it has no prominent small peak

is because the temperature does not start out hot enough to

observe a rise in the change in binding energy to its great-

est value between 0=1 and 2 KeV as shown in Figure 21,

although it does rise to :%ts greatest change in the number

of binding electrons between 0=0,02 and 0.05 KeV, as shown

in Figure 22.
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Spectra having initial temperatures much higher than I

KeV show increasing tendency to become like Model 2 spectra

because of the dominant effect of radiation energy at high

temperatures where most of the energy is radiated. Spectra

having initial temperatures below about 0.01 KeV become more

like Model 1 spectra with constant material energy because

all of the electrons are bound, eliminating any change in

binding energy, and the change in radiation energy is too

small compared to the change in material energy.

Comparison with Planckian Spectra

The result of a two-Planckian curve-fit for the Model 4

copper spectrum with starting temperature equal to 1 KeV and

atomic number density equal to IE+27 atoms/ms is displayed

in Figure 23.

0.3
13 b Copper, IE+27 atome/m

E 0.25" - a- Model4. I KeV
n
e- b - Two-Plancklon Fit

r 0.2- 0.1129 and 0.6689 KeV

y 1 0,01324. o2 - 02345

0.15- SSE - 0.42912

n

0.05
V

0 1 2 3 4 5 6 7 8 9 10

Photon Energy (KYV)

Fig. 23. Comparison of Two-Planckian Curve-Fit
with Model 4 Spectrum
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Again, the fit is not as good as higher temperature or lower

Z spectra that look more like Model 2 spectra having only

internal radiation energy. The fit is better for a particu-

lar 2 material when its spectrum resembles the plutonium

spectrum in Figure 20; that is, the initial temperature is

equal to or lower than that at which the greatest change in

binding energy occurs, with the density being sufficiently

low, so that the lower end of the spectrum has no prominent

small peak and approaches an energy density value close to

zero.

A much better curve-fit is obtained by combining three

Planckians and a Model 1 spectrum. Two Planckians are used

to match the curve from the top of the main peak to the

upper end of the spectrum, while a scaled Model 1 spectrum

is used to match the majority of the curve from the lower

end of the spectrum to the top of the main peak. The third

Planckian is scaled to match the small peak. The result is

shown in Figure 24 and compared to the Model 4 copper spec-

trum in Figure 25.
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Summary

Model 4 presents the most realistic case for the cooling

Planckian emitter of the four models examined. It accounts

for losses in material energy, radiation energy, and binding

energy, the major contributors to internal energy, as the

temperature falls. The cooling behavior of Model 4 may not

be truly accurate because of the somewhat arbitrary smooth-

ing of the free electron curves; however, it gives general

trends in the spectra for changes in temperature, density,

and material composition parameters. As the ionization

state falls within the cooling plasma, the change in mate-

rial and binding energy may produce a smaller peak in energy

density at lower photon energies than the main peak caused

primarily by the change in internal radiation energy,

depending on initidl temperature and density. If the ini-

tial temperature and density can be deduced and are in an

appropriate range, the material composition might be

recognized from its signature on the fluence spectrum, pro-

vided a detector has the rescl(Ition to differentiate the

peaks.
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VIII. Conclusions and Recommendations

The objective of investigating the nature of the time-

integrated spectrum for a cooling Planckian emitter was

approached by considering four models that dealt with the

composition and change in internal energy radiated out

through the surface of the emitter. The change in material,

radiation, and binding energy taken separately or in combi-

nation, give insight to how these quantities determine the

heat capacity, which in turn determines how much energy is

released as the temperature drops. Three parameters were

varied, temperature, density, and material composizion, each

of which changed the internal energy for some or all of the

models. Also, a few selected spectra were compared with

Planckian spectra to see if they could be fit with one or

two Planckian basis functions.

Conclusions

This study of time-integrated spectra revealed the fol-

lowing conclusions:

- The most significant effect of material and binding

energy is seen at lower photon energies of about I KeV

or less, depending on initial temperature and density,

and may produce a small peak or hump in the spectrum

separate from the main peak. The material composition

could be determined from this signature if the initial

temperature and density are known.
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- The fluence spectrum of a cooling Planckian emitter

has a non-Planckian distribution of energy.

- Two Planckian basis functions fit fluence spectra

from high initial temperature emitters best, or those

that resemble Model 2 spectra, whereas the fit becomes

poor for fluence spectra from high density emitters, or

those that resemble Model 1 Spectra. In such case, the

fit becomes better if more Planckian basis functions are

used.

Recommendations

Further improvements to Model 4 can be made by including

the effect of expanding volume on temperature and density,

and also accounting for diffusion of energy from a hotter

interior to a colder surface to approximate the true temper-

ature at which radiation is emitted.
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Appendix A: Computer Program to Calculate

the Time-Integrated Spectrum

The following program calculates the time-integrated

spectrum using the academic version of TK Solver Plus (5).

The heat capacity is changed in the subroutine labeled RULE

FUNCTION: C for the different models. A "C" at the far

left edge indicates the equation is cancelled and is not

used in computations, similar in effect to a comment line

denoted with " .

VARIABLE SHEET For Academic Use Only

St Input- Name- Output- Unit- Comment

94 Z Atomic number.

.02 9i KeV Initial temperature.

.00001 loWE KeY Lowest photon energy.

.01 highE KeY Highest photon energy.

500 Osteps Number of temperature steps (mesh).

100 Esteps Number of energy steps (mesh).

(Each mesh must be an even number for

Simpson's rule of integration).

'Planck func Planck function on Function Sheet.

'Ionize func2 Ionize function on Function Sheet.

50 ratio E/0.

IE27 Nv 1/m^3 Number density.

area 3.941E-8 KeV/m^3 Area under non-normalized spectrum.

3.941044336095132E-8

5.896E-10 areal KeV/m3 Area I under non-normalized spectrum
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for split energy mesh.

5.895735721927842E-1O

I mult Density multiplier.

RULE SHEET For Academic Use Only

S Rule

Call blank(f) 'blank erases array values.

Call blank(E)

Call blank('s)

Call Cool(func;area)

PROCEDURE FUNCTION: Cool For Academic Use Only

Comment: Calculates spectrum.

Parameter Variables: lowE,highE,Esteps,Oi,0steps

Input Variables: func

Output Variables: F

S Statement

* Additional notation not included in VARIABLE SHEET:

deltaE Energy interval.

* E Photon energy value.

' 'f[i] (An array). Value of the normalized Planck function

* times heat capacity integrated over the appropriate temp-

• erature limits, with the ith E as an energy parameter.

* F Sum of all 'f~il integrated over the appropriate energy

limits. (Area under non-normalized spectrum).

* k Multiplication factor = I or 2.

'sli] (An array). Normalized spectrum value = 'fEi] / F.

* value Intermediate function value.

* -
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U Check to see that energy mesh has even number of intervals.

IF MOD(Esteps,2)<>O THEN error:= odd number ofjintervals

• Integration over energy using Simpson's rule. Basic procedure is borrowed

* and modified from reference (5).

deltaE := (highE - lowE) / Esteps

E : lowE

k 1

value := 0

FOR i 2 2 TO Esteps

E E + deltaE

k 3 - k

'fi] :: Simpson(func, 9i, Osteps, E)

value = value + k * 'f[i]

NEXT i

'f[1] := Simpson(func, $i, esteps, lowE)

'f[Esteps + 11 := Simpson(func, 9i, esteps, highE)

F := (2 # value + 'f(1] + 'f[Esteps + !]) * deltaE / 3
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* Calculate normalized spectrum and fill lists (arrays) for plotting.

E :: lomE

FOR i := 2 TO Esteps + I

E := E + deltaE

'Eli] E

'sli] :: 'f[i] / F

NEXT i

'E[I] := lowE

'sill :: 'fill / F

PROCEDURE FUNCTION: Simpson - For Academic Use Only

Comment: Integration over temperature using Simpson's rule.

Parameter Variables: ratio,Oi

Input Variables: func,highO,Osteps,E

Output Variables: value

S Statement

' Description: Standard method of numerical integration using second-degree

8 polynomial approximation of integrand.

' Additional notation not included in VARIABLE SHEET.

9 apply(func, a, b) Calls a named function (func) defining the

0 integrand and supplies the appropriate arguments

' (a, b).

* delta$ Temperature interval.

* highO Upper temperature integration limit.
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low$ Lower temperature integration limit.

temp Temperature.

value Intermediate function value and final value for inte-

gration over temperature.

= Check to see that temperature mesh has even number of intervals.

IF MOD(esteps,2)<>O THEN error:= odd number ofjintervals

* Change lower temperature integration limit based on energy E and ratio of

* E/. E/ratio must be lower than Oi.

loO .= E / ratio

IF lowA )= Oi THEN error := ratio is too small

* Int'gration over temperature using Simpson's rule. Basic procedure is bor-

* rowed and modified from reference (5).

deltaO ;z (highe - lowe) / esteps

temp := low$
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k :=

0 value :: 0

FOR i : 2 TO Osteps

temp := temp + deltaO

k := 3 - k

value := value + k # apply(func, E, temp, deltae, lowO, highO)

NEXT i

value :: (2 * value + apply(func, E, lowO, deltaO, lowO, highO) + apply(tunc,

a E, highe, deltaO, lowO, highW)) * deltaO / 3

RULE FUNCTION: Planck For Academic Use Only

Comment: Normalized Planck function.

Parameter Variables:

Argument Variables: E,6,deltae,low$,highe

Result Variables: p

S Rule

Additional notation not included in VARIABLE SHEET:

p Normalized Planckian times heat capacity.

planck Normalized Planckian value.

planck : 15/ (pio)^4 * E^3 / (0^4 * (EXP(E/) - 1))

p = planck a C(O, deltaO, low$, highO)

RULE FUNCTION: C For Academic Use Only

Comment: Heat capacity.

Parameter Variables: Nv,ei,Z

Argument Variables: $,deltaO,low,high$

Result Variables: heatcap

6
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S Rule

* Additional notation not included in VARIABLE SHEET and previous functions.

a2 Radiation constant.

heatcap Heat capacity.

ion! Binding energy at tempi.

ion2 Binding energy at temp2.

Ionize Function that computes binding energy per atom.

materiall Material energy density at tempi.

material2 Material energy density at temp2.

radi Radiation energy density at tempi.

rad2 Radiation energy density at tempE.

starA Intermediate Zstar function value.

* starB Intermediate Zstar function value.

star! Zstar function value for tempi.

star2 Zstar function value for temp2.

temp Intermediate temperature value.

tempi Lower temperature of temperature interval.

temp2 Upper temperature of temperature interval.

temp3 Intermediate temperature value.

0 Temperature value.

Zstar Function that computes the number of free electrons

per atom at a given temperature.

' For Model 1.
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C heatcap a 1

' For Model 2.

heatcap = e3

For Model 3.

C a2 2 8.5634E+28 'Radiation constant expressed in 1\(KeV-t)3.

C heatcap =Nv * (3 / 2) + 4 a2 1 0^3

For Model 4.

C a2 = 8.5634E+28 'Radiation constant expressed in l\(KeV-m)^3.

Determine lower and upper temperatures of interval.

C temp z 0 - deltaO 1 2
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C IF e z low$ THEN tempt = IoW ELSE tetpt = temp

C temp3 = 0 + delta$ / 2

C IF 0 z high$ THEN temp2 highO ELSE teap2 = teep3

Determine number of free electrons per atom at both temperatures.

C starA ABS(Zstar(templ))

C IF starA > Z THEN start = Z ELSE start = starA

C starB z ABS(Zstar(teap2))

C IF starB > Z THEN star2 = Z ELSE star2 = starB

' Compute material energy density at both temperatures.

Cm atterl : Nv* ( + start) * 3 / 2 * tempi

C matter2 = Nv* ( + star2) * 3 / 2 * tep2

* Compute radiation energy density at both temperatures.

C radt = a2 temp1^4

C rad2 = a2 * temp2^4
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S Compute binding energy per atom at both temperatures.

C ionl =v * ABS(ionize(starti)

C ion2 = Nv * ABS(Ionize(star2))

* Compute heat capacity for temperature interval.

C heatcap = (matter2 + rad2 + ion2 - (matterl + radi + ionl)) / deltae

LIST FUNCTION: Zstar For Academic Use Only

Coment: Interpolation function for free electrons vs temperature.

Domain List: kTa

Mapping: Linear

Range List: nf7a

Element- Domain Range

1 0 0

2 .00245345426244727 .01

3 .0040090803003785 .1

4 .00766489707885056 .5

5 .0113754622168454 1.5

6 .0133180652203634 2

7 .0168206934563477 3

8 .0240665353092386 5

1
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9 .0475779982016186 10

10 .0857295777914731 15

it .113199665581666 17

12 .177949883904736 19.5

13 .278790992266599 23

14 .348411231622957 25

15 .407371098297251 26

16 .465070257418233 26.5

17 1.36937648331806 2B.5

18 1.70020947649073 28.9

19 2.12480361177458 28.98

20 2.36418313794776 28.99

21 3.62590540771914 29

22 10 29

_LIST FUNCTION: Ionize 1 For Academic Use Only

Comment: Interpolation function for binding energy vs nf.

Domain List: nfCu

Mapping: Linear

Range List: bindCu

Element- Domain Range

1 0 0

2 1 .01055774

3 2 .10225568

4 3 .20641458

5 4 .32435908

6 5 .45741488

7
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7 6 .60690848

8 7 .77416718

9 8 .96051848

10 9 1.16729018

11 10 1.39581038

12 11 1.64740738

13 12 1.92340938

14 13 2.22514478

15 14 2.55394218

16 15 2.91112998

17 16 3.29803688

18 17 3.71599148

!9 18 4.16632238

20 19 4.65035818

21 20 6.26254918

22 21 7.96334218

23 22 9.75521318

24 23 11.64063918

25 24 13.62209718

26 25 15.70206518

27 26 17.88301918

28 27 20.16743618

29 28 31.01259618

30 29 42.09627618
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Appendix 8: Computer Proqram to Fit Time-Integrated Spectra

with Two Planckian Basis Functions

This program computes the best least squares approxima-

tion for a spectrum from a given range of temperatures and

two Planckian basis functions. Its output gives the two

Planckian temperatures and the coefficients necessary to

calculate the curve, plus a measure of how good the fit is

using the sum of the square of the errors or difference

between original and calculated Y-axis values. The program

is written in FORTRAN 77 language and calls a mathematical

library routine DFNLSQ written by IMSL (6). Typical output

follows the program.

* Maj Drew Fisher

* 14 Oct 89

PROGRAM PLANCK

* This program computes a least saudres approximation with user-

* supplied basis functions. The approximation takes the form

* Y = COEFF(1) + COEFF(2)*F(I,X) + COEFF(3)*F(2,X)

* Definitions:

* COEFF - Coefficient array.

* COEFF2 - Storage array for coefficients.

DELTAT - Temperature increment.

7
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* DFNLSQ - Library routine that computes least

* squares approximation with user-supplied

* basis functions.

* ENERGY - Array of X-axis values.

* F - Subroutine for computing values from

* basis functions.

* FRACT - Array of original Y-axis values.

* INDEX1 - Stores index counter I.

* INDEX2 - Stores index counter J.

* INTCEP - Intercept.

* IWT - Weight option (not used).

* JJ - A counter.

* N - Counter used for number of data points.

* NBASIS - Nuiber of basis functions.

* NFLIP - Flip flop counter.

* NSIZEI - Array size.

* NSIZE2 - Array size.

* NUMI - Loop index.

* NUM2 - Loop index.

* RESET - Original TEMPI.

* SSE - Sum of squares of the errors - an indicator

* of fit.

* STORE - Storage array for SSE.

* TEMPI - Stores temperature for first basis function.

* TEMP2 - Stores temperature for second basis function.

* THETAI - Temperature for first basis function.
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* THETA2 - Temperature for second basis function.

* WEIGHT - Weights given to basis functions (an array of

* higher dimension if weights other than I are

* assigned).

INTEGER I, INDEX1, INDEX2, INTCEP, IWT, J, JJ, M, N, NBASIS

INTEGER NFLIP, NSIZEI, NSIZE2, NUMI, NUM2

PARAMETER (IWT = 0, NBASIS = 2, NSIZE1 = 10, NSIZE2 = 200)

DOUBLE PRECISION COEFF(NSIZE1), COEFF2(NSIZE1), DELTAT

DOUBLE PRECISION ENERGY(NSIZE2), FRACT(NSIZE2), RESET, SSE

DOUBLE PRECISION STORE(2), TEMP1, TEMP2, THETAI, THETA2, WEIGHT

PARAMETER (WEIGHT = 1)

COMMON THETA1, THETA2

EXTERNAL DFNLSQ, F

* Open file containing X-axis and Y-axis spectrum values.

OPEN (UNIT = 20, FILE = 'cufit', STATUS = 'OLD')

N= 1

10 READ (UNIT = 20, *, END = 20) ENERGY(N), FRACT(N)

PRINT*, N, ENERGY(N), FRACT(N)

N=N+ 1

GOTO 10

20 CONTINUE
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NN- 1

PRINT*

PRINT*, 'Number of points =', N

CLOSE (UNIT = 20)

* User input.

PRINT*, 'Include intercept? (I = Yes, 0 = No)'

PRINT*

READ*, INTCEP

PRINT*

PRINT*, 'For investigation, start THETAI and THETA2 at'

PRINT*, 'what temperatures (KeV)? (THETAI, THETA2)'

PRINT*

READ*, THETAI, THETA2

PRINT*

PRINT*, 'Increment temperatures by what DELTAT?'

PRINT*

READ*, DELTAT

PRINT*

PRINT*, 'Loop information. How many iterations for each'

PRINT*, 'loop? (inside [THETA1), outside [THETA2])'

PRINT*

READ*, NUM2, NUMI

PRINT*
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S * Initialize values.

NFLIP = 1

RESET = THETAI

STORE(l) = 1.OD+00

STORE(2) = STORE(l)

TEMP1 = THETAl

TEMP2 = THETA2

INDEXI = 1

INDEX2 = I

JJ = 0

* Start search for temperatures that give lowest SSE.

DO 60 1 = 1, NUM1

PRINT*, 11 =., I

THETA 1 = RESET

DO 70 J = 1, NUM2

IF (THETAl .NE. THETA2) THEN

JJ = JJ +. 1

CALL DFNLSQ (F, INTCEP, NBASIS, N, ENERGY, FRACT, IWT,

$ WEIGHT, COEFF, SSE)
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* Store coefficients from first loop pass in

* temporary storage.

IF (JJ .EQ. 1) THEN

DO 40 M = 1, NBASIS + 1

COEFF2(M) = COEFF(M)

40 CONTINUE

ENDIF

NFLIP = 3 - NFLIP

STORE(NFLIP) = SSE

* Compare SSE with the old value of SSE and overwrite

* temporary storage locations with the smallest value

* and its associated values. Three cases are checked

* and a fourth one implies no change.

IF (NFLIP .EQ. 2 .AND. STORE(2) .LT. STORE(l)) THEN

STORE(l) = STORE(2)

TEMPI = THETAI

TEMP2 = THETA2

INDEXI = I

INDEX2 = J

DO 50 M = 1, NBASIS + 1
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COEFF2(M) = COEFF(M)

50 CONTINUE

ELSEIF (NFLIP .EQ. 1 .AND. STORE(l) .LT. STORE(2)) THEN

TEMPI = THETAI

TEMP2 = THETA2

INDEXI = I

INDEX2 = J

DO 60 M = 1, NBASIS + 1

COEFF2(M) = COEFF(M)

60 CONTINUE

ELSEIF (NFLIP .EQ. 1 .AND. STORE(2) .LT. STORE(I)) THEN

STORE(1) = STORE(2)

ELSE

ENDIF

STORE(NFLIP) = STORE(1)

ENDIF

* Increment temperature for inner loop, and after last pass

* print smallest SSE encountered in inner loop, then

* increment temperature for outer loop.

THETAI = THETA1 + DELTAT

70 CONTINUE

PRINT*, STORE(1)

THETA2 = THETA2 + DELTAT

0
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80 CONTINUE

* Print output.

.

PRINT*

PRINT*, 'I =', INDEXI, 'J =', INDEX2

PRINT*, 'THETAl =', TEMPI, 'THETA2 =', TEMP2

PRINT*, 'Sum of the square of errors =', STORE(1)

PRINT*, 'Coefficients are:

DO 90 M = 1, NBASIS + 1

PRINT*, COEFF2(M)

90 CONTINUE

END

* Subroutine for basis functions.

.

* Definitions:

* F - Subroutine for computing values from user-

* supplied basis functions.

* K - Basis function number.

* X - X-axis value.

* THETA1 - Temperature for first basis function.

* THETA2 - Temperature for second basis function.

DOUBLE PRECISION FUNCTION F(K, X)
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INTEGER K

0DOUBLE PRECISION THETAI, THETA2, X
COMMON THETAI, THETA2

IF (K .EQ. 1) THEN

F = X**3.OD+00 / (THETA1**4.OD+00 * (DEXP(X/THETAI)

$ - I.OD+00))

ELSE

F = X**3.OD+0O / (THETA2**4.OD+0O * (DEXP(X/THETA2)

$ - 1.OD+O0))

ENDIF

RETURN

END

The following output is typical of the above program and

was used to generate the two-Planckian fit in Figure 10 of

Chapter V.

. f77 planck.f -limsl

planck.f:

MAIN planck:

f :

% a.out

Number of points 197

Include intercept? (1 = Yes, 0 = No)

0

For investigation, start THETAI and THETA2 at

what temperatures (KeV)? (THETA1, THETA2)

.409, .840
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Increment temperatures by what DELTAT?

.001

Loop information. How many iterations for each

loop? (inside [THETA1J, outside [THETA2])

3, 6

1= 1

3.0954533670417d-04

= 2

3.0024962916826d-04

I= 3

2.9380294559385d-04

I= 4

2.9019676931351d-04

I = 5

2.8935158596325d-04

I = 6

2.8935158596325d-04

I = 5 J = 2

THETAI = 0.41000000000000 THETA2 = 0.84400000000000

Sum of the square of errors = 2.8935158596325d-04

Coefficients are:

1.8698923739682d-02

0.13468654781493

0.

The two-Planckian fit is calculated from:

0
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a. = 0

a, = 1.8698923739682E-02

a 2 = 0.13468654781493

= = 0.410

07=. 0.844

Pl = EVlexp(E/0l)-1]

P2 = E/[exp(E/02)- 1]

= a( + a,'P, + a 2 . P2
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Appendix C: Computer Programs to Calculate Binding

Energy and Temperature

The following computer program calculates the binding

energy to remove the next bound electron from an atom and is

written in Quick Basic (7).

Maj Drew Fisher

* 5 Nov 89

* ZSTAR.BAS

Ver. 1.0 5 Nov 89

This program computes Zj* and Ej for use in Zstar.tk to

find free

I electrons vs temperature.

OPTION BASE 1

DEFINT I-N

SIZE = 10

REDIM xN(SIZE), SIGMA(SIZE, SIZE)

Slater screening constants from (3:169).

Column 1 - 5.

DATA 0.6250, 0.9383, 0.9811, 0.987 , 0.994

DATA 0.2346, 0.6895, 0.8932, 0.94 , 0.97

DATA 0.1090, 0.3970, 0.7018, 0.85 , 0.92

DATA 0.0617, 0.2350, 0.4781, 0.705 , 0.83

DATA 0.0398, 0.1552, 0.3312, 0.531 , 0.72

DATA 0.0277, 0.1093, 0.2388, 0.400 , 0.854
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DATA 0.0204, 0.0808, 0.1782, 0.3102, 0.459

0DATA 0.0156, 0.0625, 0.1378, 0.2425, 0.371
DATA 0.0123, 0.0494, 0.1106, 0.1936, 0.299

DATA 0.0100, 0.0400, 0.0900, 0.1584, 0.245

' Column 6 - 10.

DATA 0.997 , 0.999 , 1.000 , 1.000 , 1.000

DATA 0.984 , 0.990 , 0.993 , 0.995 , 1.00

DATA 0.955 , 0.97 , 0.98 , 0.99 , 1.00

DATA 0.90 , 0.95 , 0.97 , 0.98 , 0.99

DATA 0.83 , 0.90 , 0.95 , 0.97 , 0.98

DATA 0.735 , 0.83 , 0.90 , 0.95 , 0.97

DATA 0.610 , 0.745 , 0.83 , 0.90 , 0.95

DATA 0.506 , 0.635 , 0.750 , 0.83 , 0.90

DATA 0.431 , 0.544 , 0.656 , 0.760 , 0.83

DATA 0.353 , 0.466 0.576 , 0.67 , 0.765

Read data into array SIGMA(I, J).

CLS

FOR I = 1 TO 10

FOR J = 1 TO 5

READ SIGMA(I, J)

NEXT J

NEXT I

FOR I = 1 TO 10

FOR J = 6 TO 10

(
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READ SIGMA(I, J)

*NEXT J

NEXT I

User input.

INPUT "Atomic number, 2"; Z

PRINT

INPUT "Level, J"; J

PRINT

INPUT "Number of free electrons per atom"; xNF

PRINT

INPUT "Number density [1/m-3]"; xNUMDEN

PRINT

' Compute effective atomic number Zj*.

SUMI = 0

FOR I I TO J

xN() 2 * I - 2

TEMP = SUMI

SUM1 = SUMI + xN(I)

IF Z - xNF < SUM1 THEN xN(I) Z 2 - xNF - TEMP

NEXT I

SUM2 = 0

IF J > 1 THEN

FOR I = I TO J - 1
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SUM2 = SUM2 + SIGMA(I, J) * xN(I)

*NEXT I

END IF

ZJSTAR = Z - SUM2 - xN(J) * (1 - 1 / (2 * J 2)) * SIGMA(J,

J)

Compute ionization potential, Ej, to remove electron.

aO = 5.292E-11 'Bohr radius [m].

eCHARGE = 1.602E-19 'Electron charge CC].

EPSILO 8.854E-12 'Permittivity of vacuum CF/m

PI = 3.14159

RYDBERG = 13.61 'Rydberg constant CeV].

rj2 = aO 2 * J 4 / ZjSTAR - 2 * (7 / 4 + 5 / (4 * J

2))

R = (3 / (4 * PI * xNUMDEN)) ^( / 3)

ENER = eCHARGE / (8 * PI * EPSILO * R) '[eV]

Ej = -RYDBERG * (ZJSTAR / J) 2 + xNF * ENER * (18 / 5 -

rj2 / R 2)

Print output.

PRINT "Atomic number = "; Z

PRINT "Number density [I/m3] = "; xNUMDEN

PRINT "Level, J = "; J

PRINT "Electrons in J level (nj) = "; xN(J)

PRINT "Free electrons per atom (Z*) = "; xNF

0
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PRINT "Effective atomic number (Zj*) = "; ZjSTAR

PRINT "Ionization potential (Ej) [eV] = "; Ej

PRINT

END

The next program computes the temperature corresponding

to the binding energy calculated in the previous program.

VARIABLE SHEET For Academic Use Only

St Input- Name- Output- Unit- Comment

5.685E-15 me see )) Electron mass in KeV(s/m)^2.

4.136E-18 h KeY-s Planck constant.

29 Z Atomic number.

-10868.9 Ej eV Ionization potential.

L 27.1 nf 1/atom Free electrons per atom.

1E27 Mv 1/0^3 Atomic number density.

I j Principal quantum state.

1.9 nj Number of electrons in state j.

L 9 .92942099 KeY Temperature.

P .00038227 Parameter.

RULE SHEET For Academic Use Only

S Rule

P = h^2 1 (2 # pi() * me) f (nf * Nv /2 * (2 * j^2 / nj - 1))(2 / 3)

0 = -Ej / ln(( / PW(1.5))
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